Structural, Magnetic, and Optical Investigation of $\mathbf{N i}_{6} \mathbf{M n O}_{\mathbf{8}}$

P. PORTA* and G. MINELLI
Centro C.N.R. su 'Struttura e Attività Catalitica di Sistemi di Ossidi," Dipartimento di Chimica, Università di Roma La Sapienza, Piazzale A.Moro 5, 00185 Roma, Italy
and I. L. BOTTO and E. J. BARAN
Departamento de Quimica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, 1900-La Plata, Argentina

Received July 9, 1990

Abstract

$\mathrm{Mg}_{6} \mathrm{MnO}_{8}$ and $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$, which contain octahedrally coordinated $\mathrm{Mg}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Mn}^{4+}$, and cation vacancies in a cubic lattice with space group $\mathrm{Fm} 3 m$ have been prepared. $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$ has been characterized by means of several techniques. The X -ray powder pattern has shown that $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$ is isomorphous to $\mathrm{Mg}_{6} \mathrm{MnO}_{8}$. The unit cell parameter, a, of $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$ is $8.306 \pm 0.003 \AA$, which, as compared with that previously found for $\mathrm{Mg}_{6} \mathrm{MnO}_{8}(a=8.381 \AA)$, agrees with expectations based on the difference between the ionic radii for Ni^{2+} and Mg^{2+} in octahedral coordination. The magnetic susceptibility measurements for $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$ give the following values: $C=1.35, \mu=3.28 \mathrm{BM}, \theta=-65 \mathrm{~K}$, which confirm that Ni and Mn are in oxidation states of $2+$ and $4+$, respectively, and that some antiferromagnetic interactions are present within the lattice among Ni^{2+} and Mn^{4+}. The reflectance spectrum performed on $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$ has shown the presence of several bands which have been assigned to the $d-d$ transitions expected for both Ni^{2+} and Mn^{4+} ions in octahcdral coordination. The six bands in the IR spectra of $\mathrm{Mg}_{6} \mathrm{MnO}_{8}$ and $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$ compounds have been assigned; the shift toward higher frequencies observed for $\mathrm{Mg}_{6} \mathrm{MnO}_{8}$ is in agreement with expectations since Mg^{2+} has a larger ionic radius than Ni^{2+}, and this makes the nearest $\mathrm{Mn}^{4+}-\mathrm{O}$ bond shorter and stronger in the magnesium compound. © 1991 Academic Press, luc.

Introduction

In the last few years a great number of metallic oxides have been considered as possible oxygen sensors. So, there is an increasing interest for these compounds, which could show a better chemical and ceramic stability than the usually employed ZrO_{2} sensors. Toward this goal, the $M-\mathrm{Mn}-\mathrm{O}$ systems ($M=\mathrm{Ni}, \mathrm{Mg}$) have been recently analyzed (1-3).

[^0]Of the several nickel and manganese mixed oxides, included in the $\mathrm{Ni}-\mathrm{Mn}-\mathrm{O}$ system, little is known about the $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$ phase. This compound is related to the murdochite series $\left(\mathrm{Cu}_{6} \mathrm{PbO}_{8}\right.$ and $\left.\mathrm{Mg}_{6} \mathrm{MnO}_{8}\right)$, but unlike these compounds (4-9) there is not much information available about it.

The crystal structure of the $M_{6} M^{\prime} \mathrm{O}_{8}$ compounds, which are cubic with space group $F m 3 m$, may be considered as derived from the $M O$ ($M=$ divalent cation) rock-salt structure where six-eighths of the octahedral sites are occupied by the divalent M
cation, and one-eighth each by tetravalent, M^{\prime}, cations and by vacancies, the latter ordered in the alternate (111) layers. Both M and M^{\prime} cations arc octahcdrally coordinated by six oxygens. The octahedron around the tetravalent M^{\prime} ions is generally regular whereas that around the divalent M ones is distorted.

This paper reports the results of a structural, magnetic, and optical investigation performed on the $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$ compound. The related magnesium-manganese oxide phase has been analyzed for comparative purposes.

Experimental

Preparation. Pure samples of $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$ and $\mathrm{Mg}_{6} \mathrm{MnO}_{8}$ were obtained from the respective $\mathrm{Ni}(\mathrm{II}), \mathrm{Mg}(\mathrm{II})$, and $\mathrm{Mn}(\mathrm{II})$ acetates by the "precursors" technique (10, 11). For the nickel compound the $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Mn}(\mathrm{II})$ acetates were dissolved in acetic acid (25\%). The mixture of both solutions in stoichiometric ratios was boiled and vigorously stirred. A solution of oxalic acid containing the equivalent quantity of acid, plus an excess of 10%, was quickly added. The mixture was then carried to dryness at 378 K . The powder was finally pelletized and calcined in air at 873 K for 3 hr . The purity of the bright yellow-brown sample was checked by XRD, revealing the presence of the pure desired phase. Also the chemical analysis, performed by atomic absorption with a Varian SpectrAA-30 instrument, confirmed the formula $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$. The other isostructural magnesium compound, used as reference, was obtained according to the method reported in the literature (5).

IR Spectra. The IR spectra were recorded with a Perkin-Elmer 580-B spectrophotometer using the KBr pellet technique.

Magnetic susceptibility. Magnetic susceptibilities were measured by the Gouy method over the range of temperature $100-300 \mathrm{~K}$. Correction was made for the
diamagnetism of the sample. A check that the susceptibilities were independent of magnetic field strength was made.
X-ray diffraction. The powder diffraction pattern was obtained with a Philips automated PW 1729 diffractometer. Scans were taken with a step size of 0.01°, using $\mathrm{Cu} K \alpha$ (nickel-filtered) radiation. The intensities of the reflections were estimated by evaluation of the integrated peaks. The unit cell parameter for the cubic lattice of $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$ was determined taking into account all reflections occurring up to $2 \theta=170^{\circ}$ and applying a least-squares fit procedure on the observed 2θ values of the individual reflections.
Reflectance spectra. The diffuse reflectance spectrum was carried out by using a Cary 2300 spectrometer equipped with a diffuse reflectance accessory, in the wavelengths range from 200 to 2500 nm , covering the UV, visible, and near-infrared regions.

Results and Discussion

As shown in Table I the X-ray powder pattern of $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$ is similar to that reported in the literature for the parent compound $\mathrm{Mg}_{6} \mathrm{MnO}_{8}(5,6,12)$. The lattice parameter, a, for the cubic unit cell of $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$ is $8.306 \pm 0.003 \AA$, with a volume, V, equal to $573.03 \pm 0.01 \AA^{3}$. By comparing the above results with those found for $\mathrm{Mg}_{6} \mathrm{MnO}_{8}, a=8.381 \AA$ and $V=588.69$ $\AA^{3}(12)$, it may be noticed that the volume shrinkage by going from the magnesium compound to the nickel containing one is in agreement with expectations based on the difference of octahedral ionic radii for Ni^{2+} and Mg^{2+} (equal to 0.69 and $0.72 \AA$, respectively) (13).
From the linear behavior observed at higher temperatures ($168-294 \mathrm{~K}$) in the $1 /$ χ_{m} vs T (Table II) plot of the magnetic measurement the following values have been determined: Curie constant, $C=1.35$; magnetic moment, $\mu=3.28 \mathrm{BM}$; Weiss

TABLE I
X-Ray Pattern of $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$: Miller Indexes, Intensities, Observed, d_{0}, and Calculated, d_{c}, Spacings

$h k l$	$\mathrm{Ni}_{6} \mathrm{MnO}_{8}$			$\mathrm{Mg}_{6} \mathrm{MnO}_{8}$	
	I	d_{0}	$d_{\text {c }}$	d_{0}	I
111	25	4.800	4.809	4.84	60
200	14	4.162	4.161		
220	13	2.940	2.939		
311	13	2.506	2.505	2.53	15
222	65	2.399	2.399	2.42	11
400	100	2.077	2.077	2.10	100
331	2	1.906	1.906	1.923	5
420	10	1.858	1.858		
422	9	1.696	1.696		
333-511	10	1.599	1.599	1.613	9
440	45	1.468	1.468	1.482	50
531	9	1.404	1.404	1.417	9
600-442	5	1.385	1.384		
620	2	1.313	1.313		
533	25	1.267	1.267	1.278	1
62.	2	1.253	1.252	1.263	9
444	20	1.199	1.199	1.210	16
711-551	2	1.163	1.163	1.174	5
640	2	1.152	1.152		
642	2	1.110	1.110		
731-553	2	1.082	1.081	1.091	3
800	13	1.038	1.038	1.048	7
733	1	1.014	1.015		
644-820	2	1.007	1.007		
660-822	1	0.9796	0.9789		
751-555	14	0.9596	0.9591	0.9677	3
662	1	0.9535	0.9528	0.9614	5
840	25	0.9291	0.9287	0.9370	20
911-753	2	0.9122	0.9117	0.9199	3
842	1	0.9065	0.9063		
664	1	0.8861	0.8854		
931	2	0.8703	0.8707	0.8786	3
844	20	0.8478	0.8477	0.8554	20
933-771-755	2	0.8351	0.8348	0.8423	3
860-1000	1	0.8305	0.8306		
862-1020	2	0.8144	0.8145		
951-773	1	0.8027	0.8030	0.8102	7
666-1022	1	0.7992	0.7992	0.8065	9
953	1	0.7746	0.7745	0.7815	9

Note. The X-ray pattern of the reference $\mathrm{Mg}_{6} \mathrm{MnO}_{8}$ compound is also reported (ASTM 11-31).
temperature, $\theta=-65 \mathrm{~K}$. By taking into account the values of the Curie constants expected for Ni^{2+} in octahedral coordination ($C=1.28$ for $\mathrm{Ni}^{2+} / \mathrm{MgO}$, Ref. (14)) and
for Mn^{4+} in $\mathrm{Mg}_{6} \mathrm{MnO}_{8}$ ($C=1.94$, Ref. (5)], and considering the relative molar fractions, X, of $\mathrm{Ni}(0.857)$ and $\mathrm{Mn}(0.143)$ present in our sample the averaged value of the Curie constant, C, may be evaluated from the additivity law:

$$
C=C_{\mathrm{Ni}} \cdot X_{\mathrm{Ni}}+C_{\mathrm{Mn}} \cdot X_{\mathrm{Mn}}
$$

The calculated value of 1.37 is in agreement with the observed value of 1.35 ; this confirms the presence of Ni^{2+} and Mn^{4+} species in $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$. It may be added that the value of -65 K found for the Weiss temperature implies that some antiferromagnetic interactions occur within the solid among the Ni^{2+} and Mn^{4+} paramagnetic ions.

The reflectance spectrum of $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$, reported in Fig. 1, shows the appearance of five bands in the region $1400-350 \mathrm{~nm}$ ($7150-28,600 \mathrm{~cm}^{-1}$). By analogy to the spectra reported in the literature for $\mathrm{Ni}^{2+}(14-17)$

TABLE II
Molar Magnetic SusCEPTIBILITY $X_{\text {In }}$ (erg • G^{-2}. mole ${ }^{-1}$) as Measured at Different Temperatures (K) For $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$

$X_{m}\left(\times 10^{3}\right)$	T
7.25	107
7.22	113
7.20	118
7.08	124
6.87	131
6.70	137
6.43	144
6.18	149
5.54	160
5.28	165
5.14	168
5.08	171
4.95	177
4.79	190
4.69	196
4.54	207
3.70	294

Fig. 1. Reflectance spectrum of $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$. The insert shows, in an enlarged scale, the three bands occurring in the range from 600 to 800 nm .
and Mn^{4+} (5) in octahedral coordination the following assignments have been made:
(i) the large band (a) centered at 1150 nm ($8700 \mathrm{~cm}^{-1}$) is attributed to the ${ }^{3} A_{2 g} \rightarrow{ }^{3} T_{2 g}$ $d-d \mathrm{Ni}^{2+}$ transition;
(ii) the small bands (b), (c), and (d) (shown in an enlarged scale in the insert of Fig. 1) at $750 \mathrm{~nm}\left(13,300 \mathrm{~cm}^{-1}\right)$, at $718 \mathrm{~nm}(13,900$ cm^{-1}), and at $630 \mathrm{~nm}\left(15,900 \mathrm{~cm}^{-1}\right)$, respectively, are assigned to the spin forbidden ${ }^{4} A_{2 g} \rightarrow{ }^{2} E_{g},{ }^{4} A_{2 g} \rightarrow{ }^{2} T_{1 g}$, and ${ }^{4} A_{2 g} \rightarrow{ }^{2} T_{2 g}$ Mn^{4+} transitions;
(iii) the strong band (e) centered at 430 nm ($23,200 \mathrm{~cm}^{-1}$) is due to the superposition of three bands, one coming from the ${ }^{3} A_{2 g} \rightarrow$ ${ }^{3} T_{1 g}, \mathrm{Ni}^{2+}$ transition (it occurs at 370 nm , $27,000 \mathrm{~cm}$, in $\mathrm{Ni}^{2+} / \mathrm{MgAl}_{2} \mathrm{O}_{4},(17)$), and two from the ${ }^{4} A_{2 g} \rightarrow{ }^{4} T_{2 g}$ and ${ }^{4} A_{2 g} \rightarrow{ }^{4} T_{1 g} \mathrm{Mn}^{4+}$ transitions (they occur at $490 \mathrm{~nm}, 20,400$ cm^{-1}, and at $410 \mathrm{~nm}, 24,400 \mathrm{~cm}^{-1}$, in $\mathrm{Mg}_{6} \mathrm{MnO}_{8}$ (5)).

We may finally report and discuss the results obtained from the IR spectra. It should be recalled that, according to the crystal structure of the $M_{6} M^{\prime} \mathrm{O}_{8}$ parent com-
pounds, both the bi- and tetravalent cations are octahedrally coordinated by six oxygens, although the environment around the M^{2+} cation is slightly distorted. The number and symmetry of the vibrational modes in the $M_{6} \mathrm{MnO}_{8}$ spectra can be obtained by a factor group analysis (18, 19). Table III gives the correlation for the $M_{6} \mathrm{MnO}_{8}$ compounds, which is obtained considering the atomic positions for the Fm 3 m space group. The irreducible representation of the optical modes in the crystal lattice is:

$$
\begin{array}{r}
\Gamma_{\mathrm{opt}}=6 F_{\mathrm{tu}}+A_{1 g}+E_{g}+F_{\mathrm{tg}}+2 F_{2 g}+A_{2 u} \\
\\
+E_{u}+3 F_{2 u},
\end{array}
$$

where only the $F_{1 u}$ modes are IR active. The $A_{1 g}, E_{g}$, and $F_{2 g}$ vibrations are active in the Raman effect, whereas the remaining modes are inactíve.

According to these results six bands must be observed in the IR spectrum and only four in the Raman effect. The latter spectrum is very difficult to obtain in our case mainly because of the darkness of the samples.

TABLE III
Factor Group Analysis of the $\mathrm{M}_{6} \mathrm{MnO}_{8}$ Lattice (Space Group Fm3m)

Atom	Number and position	$A_{1 g}$	$A_{2 g}$	E_{g}	$F_{1 g}$	$F_{2 g}$	$A_{1 u}$	$A_{2 u}$	E_{u}	$F_{1 u}$	$F_{2 u}$
Mn	$1 a$	0	0	0	0	0	0	0	0	1	0
M	$6 d$	0	0	0	0	0	0	1	1	3	2
O_{I}	$2 c$	0	0	0	0	1	0	0	0	1	0
O_{II}	$6 e$	1	0	1	1	1	0	0	0	2	1
Total $(3 N=45)$		1	0	1	1	2	0	1	1	7	3
Acoustic (3)									1		

Figure 2 shows the IR spectra of both $\mathrm{Mg}_{6} \mathrm{MnO}_{8}$ and $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$ compounds. As it is possible to observe, the six predicted bands (whose frequencies in cm^{-1} are reported for both compounds) appear in the IR spectra.

Although the $\mathrm{M}^{2+}-\mathrm{Mn}^{4+}$ atomic distances are approximately $3 \AA$, the existence of important coupling effects between both MO_{6} polyhedra in the lattice is evident. So, all the atoms can contribute to each vibration. A similar behavior has been observed in some other oxidic systems such as the $\mathrm{Te}_{3} M^{4+} \mathrm{O}_{8}$ compounds (20, 21). However, the highest frequency bands (although not pure vibrations) might be associated with the Mn^{4+} polyhedra (22). By comparing the IR spectra of the two compounds a slight shift toward higher frequencies is observed for the Mg sample. This is in agreement with the M^{2+} ionic radii (0.69 and $0.72 \AA$ for Ni^{2+} and Mg^{2+}, respectively (13)) whose effect is to shorten and reinforce the $\mathrm{Mn}-\mathrm{O}$ bond in the magnesium compound.

The strong band located between 400 and $450 \mathrm{~cm}^{-1}$ may be assigned to the $M^{2+}-\mathrm{O}-\mathrm{Mn}^{4+}$ stretching-shrinking motions which appear at higher frequencies than those observed in other related oxidic systems (23). The bands below $400 \mathrm{~cm}^{-1}$ are associated with the $\mathrm{M}^{2+} \mathrm{O}_{6}$ and $\mathrm{Mn}^{4+} \mathrm{O}_{6}$ bendings.

It is also interesting to remark that $I R$ spectroscopy allows one to follow the $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$ thermal behavior. We have ob-

Fig. 2. IR spectra: (a) $\mathrm{Mg}_{6} \mathrm{MnO}_{8}$; (b) $\mathrm{Ni}_{6} \mathrm{MnO}_{8}$. Frequencies, cm^{-1}, are reported for each band.
served that the decomposition process starts at 1073 K with a clear segregation of NiO and NiMnO_{3}. A modified IR spectrum, with a very strong and broad band centered at $452 \mathrm{~cm}^{-1}$ and a marked shoulder at 580 cm^{-1}, is generated by a superposition of the NiO and NiMnO_{3} spectra.

References

1. N. Valverde Diez, J. Amer. Ceram. Soc. 68, 657 (1985).
2. N. Valverde Diez and D. Grande Fernandez, Solid State Ionics 28-30, 1697 (1988).
3. Yu V. Golikov and V. F. Balakirev, J. Phys. Chem. Solids 49, 329 (1988).
4. D. G. Wickham, J. Inorg. Nucl. Chem. 26, 1369 (1964).
5. P. Porta and M. Valigi, J. Solid State Chem. 6, 344 (1973).
6. J. S. Kasper and J. S. Prener, Acta Crystallogr. 7, 246 (1954).
7. E. Dubler, A. Vedani, and H. R. Oswald, Acta Crystallogr. Sect. C 39, 1143 (1983).
8. J. J. Fahey, Amer. Mineral. 40, 905 (1955).
9. U. Takahashi and Y. Sakamoto, J. Sci. Hiroshima Univ. Ser. A Phys. Chem. 24, 647 (1960).
10. H. S. Horowitz and J. M. Longo, Mater. Res. Bull. 13, 1359 (1978).
11. J. M. Longo, H. S. Horowitz, and L. R. Clavenna, "Solid State Chem.: A Contemporary Overview," (S. L. Holt, J. B. Milstein, and M. Robbins, Eds.) Adv. Chem. Series 186 Amer. Chem. Soc., Washington DC (1980).
12. X-Ray Powder Data File, ASTM 11-31.
13. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).
14. A. Cimino, M. Lo Jacono, P. Porta, and M. Valigi, Z. Physik. Chem. N. F. 55, 14 (1967).
15. R. Pappalardo, D. L. Wood, and R. C. Linares, J. Chem. Phys. 35, 4041 (1961).
16. G. R. Rossman, R. D. Shannon, and R. K. Waring, J. Solid State Chem. 39, 277 (1981).
17. P. Porta, F. S. Stone, and R. G. Turner, J. Solid State Chem. 11, 135 (1974).
18. D. M. Adams and D. C. Newton, J. Chem. Soc. A, 2822 (1970).
19. D. M. Adams, Coord. Chem. Rev. 10, 183 (1973).
20. I. L. Botto and E. J. Baran, Z. Anorg. Allg. Chem. 480, 220 (1981).
21. I. L. Botto and E. J. Baran, Z. Anorg. Allg. Chem. 444, 282 (1978).
22. M. T. McDevitt and W. L. Baun, Spectrochim. Acta 20, 799 (1964).
23. N. Ogita, M. Udagawa, K. Kojma, and K. Ohbayashi, J. Phys. Soc. Japan 57, 3932 (1988).

[^0]: * To whom correspondence should be addressed. 0022-4596/91 \$3.00
 Copyright 01991 by Academic Press, Inc.
 All rights of reproduction in any form reserved.

